CONIC SECTIONS: PARABOLA,ELLIPSE AND HYPERBOLA

THE PARABOLA

The parabola is a locus of points, equidistant from a given point, called the Focus and from a given line called the Directrix.

(Length of directrix from V, (AV) = Length of Focus from V ,(FV))

The line AB, a distance ofa, from the y axis is called the Directrix. The line AF is called the axis of symmetry.

Since

BP = FP

BP2 = FP2

(x + a)2 = (x-a)+ (y-0)2

            x2 + 2ax + a2 = x2 – 2ax + a+ y2

4ax = y2

thus,    y2 = 4ax is the equation of the parabola.

The line RQ which is perpendicular to AF is called the latusrectum, V is called the vertex and F the focus of theparabola.

If the vertex of the parabola is translated to a point \(x1,y1), the equation of the parabola becomes

(y-y1)2 = 4a(x-x1)2.

The above equation is said to be in the standard or  canonicalform

Examples

1. find the focus and directrix  of the parabola y2 = 16x

2. write down the equation of the parabola y2– 4y-12x+40 = 0 in its canonical form and hence find  i) the vertex;   ii) the focus;  iii)  the directrix of the parabola

`         Solution

1.  comparey2 = 16x with   y2 = 4ax,

4a = 16 ,  a = 4

Thus the focus is (4,0) while the directrix is x = -4

2.   y2– 4y-12x + 40 = 0

y2– 4y-+4-12x+40 = 0+4 …. (completing the square)

y2– 4y+4 =  12x – 36 …… (rearranging)

(y – 2)2 = 12(x-3) …… (factorising)

But (y – y1)2 = 12(x-x1)

i) hence vertex (x1,y1) = (3,2)

ii) since 4a = 12,   a = 3  then the focus  (x1+a,y1) = (3+3,2) = (6,2)

iii)the equation of the directrix is x = 3-3 ie x=0

note that the thedirectrix is of equal but opposite distance from the vertex with thefocus

this means the distance between the focus and the vertex = the distance between the directrixand the vertex

Ready to make school management and growth easy? Book your free onboarding session now

Get more class notes, videos, homework help, exam practice on Android [DOWNLOAD]

Get more class notes, videos, homework help, exam practice on iPhone [DOWNLOAD]

Don`t copy text!