Search

# BINOMIAL EXPANSION

PASCAL TRIANGLE, BINOMIAL THEOREM OF NEGATIVE, POSITVE AND FRACTIONAL POWER

PASCAL’S TRIANGLE

Consider the expressions of each of the following:

(x + y)0;  (x + y )1; (x + y)2; (x + y)3; (x + y)4

(x + y)0 = 1

(x + y)1 = 1x + 1y

(x + y)2 = 1x2 + 2xy + 1y2

(x + y)3= 1x3 + 3x2y + 3xy2 + 1y3

(x + y)4 = 1x4 + 4x3y + 6x2y2 + 4xy3 + 1x4

The coefficient of x and y can be displayed in an array as:

1

1                      1

1                      2                      1

1                      3                      3                      1

1                      4                      6                      4                      1

The array of coefficients displayed above is called Pascal’s triangle, and it is used in determining the co-efficients of the terms of the powers of a binomial expression

Coefficient of (x + y)0                                                               1

Coefficient of (x + y)1                                                   1                      1

Coefficients of (x + y)2                                      1                      2                      1

Coefficients of (x + y)3                          1                      3                      3                      1

Coefficients of (x + y)4              1                      4                      6                      4                      1

Example 1

Using Pascal’s riangle, expand and simplify completely: (2x + 3y)4

Solution:

(2x + 3y)4 = (2x)4 + 4(2x)3 (3y) + 6(2x)2(3y)2 + 4(2x)(3y)3 + (3y)4

= 16x4 + 96x3y + 216x2y2 + 216xy3 + 81y4

Examples 2:

Using pascal’s triangle, the coefficients of (x + y)5are: 1,5,10,10,5,1.

Therefore (x – 2y)5       = x5 + 5x4(-2y) + 10x3(-2y)2 + 10x2(-2y)3 + 5x(-2y)4 + (-2y)5

= x5 – 10x4y + 40x3y2 – 80x2y3 + 80xy4 – 32y5

Example 3

Using Pascal’s triangle, simplify, correct to 5 decimal places (1.01)4

Solution

We can write (1.01)4 = (1 + 0.01)4

(1 + 0.01)4 = 1 + 4(0.01) + 6(0.01)2 + 4(0.01)3+(0.01)4

= 1 + 0.04 + 0.0006 + 0.000004 + 0.00000001

= 1.04060401

= 1.04060 (5 d.p)

It can be shown that the binomial expansion formula holds for positive, negative, integral or any rational value of n, provided there is a restriction on the values of x and y in the expansion of (x + y)n

We shall however consider only the binomial expansion formula for a positive integral n

Example 4:

a.             Write down the binomial expansion of  6 simplifying all the terms

b.                   Use the expansion in (a) to evaluate (1.0025)6 correct to five significant figures.

(1.03)6 + (0.97)6   = 2 + 270(0.01)2 + 2430(0.01)4 + 1458(0.01)

= 2 + 0.027 + 0.0000243 + 2.0270243

= 2.02702    (5 d.p)

GENERAL EVALUATION

1) Write down and simplify all the terms of the binomial expansion of ( 1 – x )6 . Use the expansion to evaluate  0.9976  correct to 4 dp

2) Write down the expansion of  ( 1 + ¼ x ) 5 simplifying all its coefficients

3) Use the binomial theorem to expand  ( 2 – ¼ x)5 and simplify all the terms

4) Deduce  the expansion of   ( 1 – x +x2 )6  in ascending powers of x

New Further Maths Project 2  page 73 – 78

WEEKEND ASSIGNMENT

If the first three terms of the expansion of ( 1 + px )n in ascending powers of  x are   1 + 20v + 160x find  the value of

1)  n  a) 2  b) 3  c) 4  d) 5

2) p   a) 2  b) 3  c) 4  d) 5

3) In the expansion of  ( 2x + 3y )4  what is the coefficient of  y4   a) 16  b) 81  c) 216  d) 96

For more class notes, homework help, exam practice, download our App HERE

Join ClassNotes.ng Telegram Community for exclusive content and support HERE

Don`t copy text!