Back to: Further Mathematics SS2
PASCAL TRIANGLE, BINOMIAL THEOREM OF NEGATIVE, POSITVE AND FRACTIONAL POWER
PASCAL’S TRIANGLE
Consider the expressions of each of the following:
(x + y)0; (x + y )1; (x + y)2; (x + y)3; (x + y)4
(x + y)0 = 1
(x + y)1 = 1x + 1y
(x + y)2 = 1x2 + 2xy + 1y2
(x + y)3= 1x3 + 3x2y + 3xy2 + 1y3
(x + y)4 = 1x4 + 4x3y + 6x2y2 + 4xy3 + 1x4
The coefficient of x and y can be displayed in an array as:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
The array of coefficients displayed above is called Pascal’s triangle, and it is used in determining the co-efficients of the terms of the powers of a binomial expression
Coefficient of (x + y)0 1
Coefficient of (x + y)1 1 1
Coefficients of (x + y)2 1 2 1
Coefficients of (x + y)3 1 3 3 1
Coefficients of (x + y)4 1 4 6 4 1
Example 1
Using Pascal’s riangle, expand and simplify completely: (2x + 3y)4
Solution:
(2x + 3y)4 = (2x)4 + 4(2x)3 (3y) + 6(2x)2(3y)2 + 4(2x)(3y)3 + (3y)4
= 16x4 + 96x3y + 216x2y2 + 216xy3 + 81y4
Examples 2:
Using pascal’s triangle, the coefficients of (x + y)5are: 1,5,10,10,5,1.
Therefore (x – 2y)5 = x5 + 5x4(-2y) + 10x3(-2y)2 + 10x2(-2y)3 + 5x(-2y)4 + (-2y)5
= x5 – 10x4y + 40x3y2 – 80x2y3 + 80xy4 – 32y5
Example 3
Using Pascal’s triangle, simplify, correct to 5 decimal places (1.01)4
Solution
We can write (1.01)4 = (1 + 0.01)4
(1 + 0.01)4 = 1 + 4(0.01) + 6(0.01)2 + 4(0.01)3+(0.01)4
= 1 + 0.04 + 0.0006 + 0.000004 + 0.00000001
= 1.04060401
= 1.04060 (5 d.p)
It can be shown that the binomial expansion formula holds for positive, negative, integral or any rational value of n, provided there is a restriction on the values of x and y in the expansion of (x + y)n
We shall however consider only the binomial expansion formula for a positive integral n
Example 4:
a. Write down the binomial expansion of 6 simplifying all the terms
b. Use the expansion in (a) to evaluate (1.0025)6 correct to five significant figures.
(1.03)6 + (0.97)6 = 2 + 270(0.01)2 + 2430(0.01)4 + 1458(0.01)
= 2 + 0.027 + 0.0000243 + 2.0270243
= 2.02702 (5 d.p)
GENERAL EVALUATION
1) Write down and simplify all the terms of the binomial expansion of ( 1 – x )6 . Use the expansion to evaluate 0.9976 correct to 4 dp
2) Write down the expansion of ( 1 + ¼ x ) 5 simplifying all its coefficients
3) Use the binomial theorem to expand ( 2 – ¼ x)5 and simplify all the terms
4) Deduce the expansion of ( 1 – x +x2 )6 in ascending powers of x
Reading Assignment
New Further Maths Project 2 page 73 – 78
WEEKEND ASSIGNMENT
If the first three terms of the expansion of ( 1 + px )n in ascending powers of x are 1 + 20v + 160x find the value of
1) n a) 2 b) 3 c) 4 d) 5
2) p a) 2 b) 3 c) 4 d) 5
3) In the expansion of ( 2x + 3y )4 what is the coefficient of y4 a) 16 b) 81 c) 216 d) 96
Ready to make school management and growth easy? Book your free onboarding session nowGet more class notes, videos, homework help, exam practice on Android [DOWNLOAD]
Get more class notes, videos, homework help, exam practice on iPhone [DOWNLOAD]