Basic Operation of Integers

 

Welcome to JSS2!

We are eager to have you join us in class!!

In today’s class, We will be discussing Basic Operation of Integers. We hope you enjoy the class!

 

  • Definition
  • Indices
  • Laws of Indices

 

Definition of Integer

An integer is any positive or negative whole number

positive and negative integers mathematics classnotesng 

Example:

Simplify the following

I.  (+8) + (+3)           ii. (+9) –  (+4)

Solution

         I.   (+8) + (+3) = +11                 ii   (+9) – (+4) = 9-4 = +5 or 5

 

Self Evaluation

Simplify the following

      i.  (+12) –(+7)              ii. 7-(-3)-(-2)

integers mathematics classnotesng 

Indices

The plural of index is indices

10 x 10 x 10= 103 in index form, where 3 is the index or power of 10.

P5 =p x p x p x p x p. 5 is the power or index of p in the expression P5.

indices mathematics classnotesng

Laws of Indices
  • Multiplication law:

ax x ay = ax+y

E.g. a5xa3 = a x a x a x a x a x a x a x a =a8

y1 x y4 = y 1+4  = y5

ax a5 = a3 + 5 = a8

4c4 x 3c2

= 4 x 3 x c4 x c2 = 12 x c4+2 =12c6

 

Classwork

Simplify the following

(a) 103 x 104          (b) 3 x 106 x 4 x 102     (c) p3 x p       (d) 4f3  x  5f

 

  • Division law

(1)  ax ÷ ay = ax ÷ ay = ax-y

 

Example

Simplify the following

(1)  a7÷a3=a x a x a x a x a x a x a ÷ a x a x a

a7-3 = a4

(2) 106÷103=106÷103=106-3=103

(3) 10a7÷2a2=10a7÷2a2=5a7-2=5a5

 

Classwork

Simplify the following

A. 105÷103        B.  51m9÷3m            C. 8×109÷4×106        

 

 

  • By division law

ax-x=a0

a0=1

E.g. 1000 =1

500=1

  • Zero indexes

ax ÷ ax =

axx = a0 = 1

 

  • Negative index

a0 ÷ ax = 1/ax

But by division law, a0-x=a-x

Therefore, a-x=1/ax

 

Example

  1. Simplify (i) b-2 (ii) 2-3

Solution

b-2 = 1/ b2                           (ii) 2-3 = 1/2= 1/2x2x2 = 1/8

 

Class work

(1) 10-2     (2) d0 x d4 x d-2          (3) a-3÷a-5      (4)  (1/4)-2

 

 

  • Power of index

[am]n = amxn

amn

E.g. [a2]4= x a2 x a2 x a2 = a x a x a x a x a x a x a x a=a8

Therefore. a2×4=a8.

(6)   [mn] a=m ax na = mana. e.g. [4+2x] 2 = 42+22xx2  =

16+4x2 = 4[4+1xx2] = 4[4+x2].

 

  •       Fractional indexes

am/n   = a1/n xm= n√ am

 

Example

  1. (a1/2)2 = a2/2 = a1 =a
  2. (√a)2 = √a x √a = √a x a = √a2 = a      e.g. 321/55√321
  3. 323/5  = 5√32= 5√25×3 = 23 = 2x2x2 = 8
  4. 272/3 = 3√272 = 32 = 3x3x3 = 9
  5. 4-3/2 = √(1/4)3= 1/23
  6. (0001)3 =1×10-3  = (10-3)3=10-3×3=10-9 =
    11000000000

      =0.000000001

  7. (am)p/q = amp = √(a)p
  8. (162)3/4 = √ (162)3 = (22)3 = (4)3=4x4x4 = 64

 

  • The Equator of power for equal base

Ax =Ay , That is x = y

 

laws of indices mathematics classnotesng

READING ASSIGNMENT

New General Mathematics, UBE Edition, chapter 2 Pages 24-26

Essential Mathematics by A J S Oluwasanmi, Chapter 3 pages 27-29

WEEKEND ASSIGNMENT

  1. Simplify (+13) – (+6)

(a)7  (b) -7   (c) 19           (d) 8

  1. Simplify (+11) – (+6) – (-3)

(a)7 (b)8    (c)9   (d)10

  1. Simplify 5x3 x 4x7 (a) 20x4 (b) 20x10 (c) 20x7         (d) 57x10
  2. Simplify 10a8 ÷ 5a6 (a) 2a2 (b) 50a2           (c) 2a14           (d) 2a48
  3. Simplify r7 ÷ r7 (a) 0 (b) 1   (c) r14  (d) 2r7

 

THEORY

  1. Simplify
  • 5y5 x 3y3
  • 24 x 8
  • 6x
  1. Simplify (1/2)-3

 

We have come to the end of this class. We do hope you enjoyed the class?

Should you have any further question, feel free to ask in the comment section below and trust us to respond as soon as possible.

In our next class, we will be talking about Whole Numbers and Decimal Numbers. We are eager to meet you there.

Pass WAEC, JAMB, POST-UTME & more in One Sitting for FREE!💃

Leave a Reply

Your email address will not be published.

Don`t copy text!